A Small Volatile Bacterial Molecule Triggers Mitochondrial Dysfunction in Murine Skeletal Muscle

نویسندگان

  • A. Aria Tzika
  • Caterina Constantinou
  • Arunava Bandyopadhaya
  • Nikolaos Psychogios
  • Sangseok Lee
  • Michael Mindrinos
  • J. A. Jeevendra Martyn
  • Ronald G. Tompkins
  • Laurence G. Rahme
چکیده

Mitochondria integrate distinct signals that reflect specific threats to the host, including infection, tissue damage, and metabolic dysfunction; and play a key role in insulin resistance. We have found that the Pseudomonas aeruginosa quorum sensing infochemical, 2-amino acetophenone (2-AA), produced during acute and chronic infection in human tissues, including in the lungs of cystic fibrosis (CF) patients, acts as an interkingdom immunomodulatory signal that facilitates pathogen persistence, and host tolerance to infection. Transcriptome results have led to the hypothesis that 2-AA causes further harm to the host by triggering mitochondrial dysfunction in skeletal muscle. As normal skeletal muscle function is essential to survival, and is compromised in many chronic illnesses, including infections and CF-associated muscle wasting, we here determine the global effects of 2-AA on skeletal muscle using high-resolution magic-angle-spinning (HRMAS), proton ((1)H) nuclear magnetic resonance (NMR) metabolomics, in vivo (31)P NMR, whole-genome expression analysis and functional studies. Our results show that 2-AA when injected into mice, induced a biological signature of insulin resistance as determined by (1)H NMR analysis-, and dramatically altered insulin signaling, glucose transport, and mitochondrial function. Genes including Glut4, IRS1, PPAR-γ, PGC1 and Sirt1 were downregulated, whereas uncoupling protein UCP3 was up-regulated, in accordance with mitochondrial dysfunction. Although 2-AA did not alter high-energy phosphates or pH by in vivo (31)P NMR analysis, it significantly reduced the rate of ATP synthesis. This affect was corroborated by results demonstrating down-regulation of the expression of genes involved in energy production and muscle function, and was further validated by muscle function studies. Together, these results further demonstrate that 2-AA, acts as a mediator of interkingdom modulation, and likely effects insulin resistance associated with a molecular signature of mitochondrial dysfunction in skeletal muscle. Reduced energy production and mitochondrial dysfunctional may further favor infection, and be an important step in the establishment of chronic and persistent infections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle.

Oxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while ...

متن کامل

Mitochondria-Derived Superoxide Links to Tourniquet-Induced Apoptosis in Mouse Skeletal Muscle

Our previous study has reported that superoxide mediates ischemia-reperfusion (IR)-induced necrosis in mouse skeletal muscle. However, it remains poorly understood whether IR induces apoptosis and what factors are involved in IR-induced apoptosis in skeletal muscle. Using a murine model of tourniquet-induced hindlimb IR, we investigated the relationship between mitochondrial dysfunction and apo...

متن کامل

Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway.

Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse...

متن کامل

Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran

  Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...

متن کامل

Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle.

Several in vitro studies about age-associated skeletal muscle mitochondrial dysfunction are somewhat conflicting, and this might be related to different normalization procedures. The objective of this study was to normalize the functional and biochemical data per number of mitochondria present in a mitochondrial suspension. Functional and biochemical parameters were obtained in mitochondrial su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013